
Hierarchical Active Transfer Learning

David Kale∗ Marjan Ghazvininejad∗ Anil Ramakrishna∗ Jingrui He† Yan Liu∗

Abstract

We describe a unified active transfer learning framework
called Hierarchical Active Transfer Learning (HATL).
HATL exploits cluster structure shared between differ-
ent data domains to perform transfer learning by im-
puting labels for unlabeled target data and to generate
effective label queries during active learning. The re-
sulting framework is flexible enough to perform not only
adaptive transfer learning and accelerated active learn-
ing but also unsupervised and semi-supervised transfer
learning. We derive an intuitive and useful upper bound
on HATL’s error when used to infer labels for unlabeled
target points. We also present results on synthetic data
that confirm both intuition and our analysis. Finally, we
demonstrate HATL’s empirical effectiveness on a bench-
mark data set for sentiment classification.

1 Introduction

In the era of big data, one major challenge confronting
us is that typically only a small portion of the vast
data is labeled, since annotation is often both time
consuming and costly. This can limit the performance of
predictive models and their ability to generalize to new
observations. In response to this challenge, researchers
have explored two complementary directions: transfer
learning and active learning.

The goal of transfer learning (and related tech-
niques, such as domain adaptation), is to leverage the
labeled data from a related source domain (or task) to
compensate for lack of (labeled) data in a target domain.
Transfer learning has seen significant success in applica-
tions, such as computer vision [16] and natural language
processing [12]. However, it is also notorious for produc-
ing negative transfer, where transferring source knowl-
edge hinders learning in the target domain, especially
when zero target labels are available [14].

In some applications, we have access to a label
oracle with limited query budget. In these cases, active
learning can identify a small set of examples that, if
labeled, will help to train effective predictive models.

∗Computer Science Department, Viterbi School of Engineer-

ing, University of Southern California, USA
†School of Computing, Informatics, and Decision Systems

Engineering, Arizona State University, USA

A vibrant area of machine learning research over the
past decade, active learning has produced a number
of practical and theoretical breakthroughs, as well as
a wide spectrum of algorithms [17, 5]. Nonetheless,
active learning is not a panacea; in particular, it has
a circular dependency on data. In order to pose good
label queries, we must have a reasonably good classifier;
in order to train a good classifier, we need labeled data.
When starting with no labels (i.e., a cold start), most
active learners must resort to random sampling [5, 10].

In this paper, we develop a new hierarchical
clustering-based framework, named Hierarchical Active
Transfer Learning (HATL), that combines these two
learning schemes. It takes as input a cluster tree built
on source and target data and uses cluster structure
and label information from both domains to impute la-
bels on the full data set (source and target). During
early learning it relies heavily on labeled source points
but gradually incorporates feedback from target label
inquiries to refine both its clustering and its label impu-
tation. This accelerates the learning process and mit-
igates the cold start problem. We derive an intuitive
and useful upper bound on HATL’s error when used
to infer labels for unlabeled target points and present
results on synthetic data that deliver insight into our
theoretical analysis. We demonstrate HATL’s empiri-
cal effectiveness on a benchmark data set for sentiment
classification.

The paper is organized as follows. In Section 2, we
briefly review the related work. The proposed frame-
work is introduced in Section 3, followed by theoretical
analysis in Section 4. Finally, we provide experimental
results in Section 5 and conclude in Section 6.

2 Related Work

There is a growing body of excellent research on com-
bining active learning with transfer learning [15, 13],
but the topic still has many open problems and gaps
to bridge between theory and practice. [15] represents
some of the earliest active transfer learning work and de-
scribes a simple but intuitive solution that uses a source-
trained classifier as a cost-free surrogate for the target
label oracle. The paper analyzes label complexity and
error rates and demonstrates convincing empirical re-

sults. This approach uses uncertainty region sampling,
which can be susceptible to bias and local optima [5].

[4] proposes an optimization-based framework (JO-
TAL) for adaptive transfer learning with feedback from
batch target label queries. What makes this framework
unique is its choice of objective function: instead of tar-
get classification error, it optimizes the similarity (mea-
sured using kernel maximum mean discrepancy [8]) be-
tween labeled source and target and remaining unla-
beled target data points. Empirical results suggest that
JOTAL is one of the most effective active transfer learn-
ing frameworks to date. The algorithm, however, lacks a
rigorous theoretical treatment and uses a quadratic pro-
gramming formulation that may require modification to
scale up to large data sets.

[19] describes a theoretically rigorous Bayesian
framework for active transfer learning, based on prior-
dependent learning. Assuming a prior distribution over
model parameters can accelerate active learning, but
this requires access to the prior [18]. [19] shows that in
sequential transfer learning settings, the prior is iden-
tifiable and places an upper bound on the number of
samples required from each domain. However, there is
no limit on the number of tasks that may be required,
and the paper presents no experimental results.

A recent paper that bridges the gap between
theoretical soundness and empirical effectiveness is
[10], which presents a principled framework called
transfer-accelerated, importance weighted consistent ac-
tive learning (TIWCAL). The authors combine the ag-
nostic active learning algorithm of [1] with transfer
learning based on minimizing a convex combination of
source and target errors [2]. They provide efficient al-
gorithm and derive an intuitive upper bound on target
classification error. Their empirical results show that
TIWCAL can improve target task performance while
reducing the number of target label queries. This ap-
proach, however, suffers from the use of static transfer
learning, based on an a priori choice of domain weights.

3 The Proposed Framework

In this section, we introduce our Hierarchical Active
Transfer Learning (HATL) framework. We define no-
tation in Section 3.1, briefly review Hierarchical Sam-
pling for Active Learning (HSAL) [6] in Section 3.2,
and describe HATL in Section 3.3.

3.1 Notation: Let X denote a finite sample of data
points from a distribution D. Let f be a true labeling
function, so that the label of a point x is f(x). We
will add subscripts to denote samples and distributions
for different domains (e.g., XT, DT, and fT for the
target domain). We will view learning as searching for

a hypothesis h ∈ H. Now let T denote the binary
tree representing a hierarchical clustering of the data
points in X . For any node (or cluster) v in T , let Tv
denote the hierarchy of nodes (or subtree) rooted at
v. In particular, T = Troot. If we descend far enough
down Tv, we reach a leaf node x, which is a data point.
Denote the set of points associated with arbitrary v as
X(v). Each v has two child nodes u1 and u2, such that
X(v) = X(u1) ∪X(u2). Trivially, X(x) = {x} for leaf
nodes. A pruning Pv is a subset of non-overlapping
nodes of Tv that contains all points associated with v:
X(v) =

⋃
u∈Pv

X(u). P is a pruning of the complete
tree T . A labeling function L(v) is a mapping of a node
v to a label (e.g., L(v) : v 7→ ±1).

3.2 A Brief Review of HSAL: The Hierarchical
Sampling for Active Learning (HSAL) [6] algorithm was
introduced in [6] and is described in detail in Appendix
7.1 HSAL begins with a cluster tree T over N points
in X and a label query budget of B. At all times, it
maintains a current P and L for T , with initial values
of P = {root} and L(root) = +1. Each iteration of
HSAL consists of four main steps. First, it queries labels
for a batch of b unlabeled points. Second, it estimates
the label proportions in each v ∈ P . Next, it updates
P by replacing any node v with its children if it has
a high label disagreement (i.e., high likelihood that the
label proportions are equal, quantified using confidence
intervals). Finally, it updates L by letting L(v) equal
the estimated majority label for each v. Label queries
are made by choosing first a cluster v from P and then
an unlabeled point x from X(v). [6] suggests choosing
v with probability proportional to both its size and
uncertainty about its majority label.

Upon termination, HSAL produces a fully labeled
data set Y = {(x, ŷ(x)) : ∀x ∈ X} by assigning
ŷ(x) = L(v) to each x ∈ X(v). Y can be used to
train any classifier. This label imputation step may as-
sign some incorrect labels, but it also avoids the sam-
ple selection bias suffered by other active learning al-
gorithms [6]. The goal of HSAL, then, is to use B
label queries to search for P and L with the min-
imum possible label imputation error ε(P,L), where
ε(P,L) = (1/N)

∑
v∈P

∑
x∈X(v) (L(v) 6= f(x)). This is

the error when each point is assigned the label L(v) of
its associated cluster v in P . It can be thought of as
transductive classification error on the clustered data.

3.3 Hierarchical Active Transfer Learning: In
active transfer learning, we have labeled data XS from

1Available online at http://www-scf.usc.edu/∼dkale/
publications.html

the source domain, in addition to unlabeled target data
XT. Our proposed HATL framework can leverage XS

and a limited number of queried target labels to help
impute labels for the full XT, which we can then use to
train an accurate classifier for the target domain. HATL
is summarized in Algorithm 1.

Algorithm 1 Hierarchical Active Transfer Learning
(HATL)

Input: Hierarchical cluster tree T of unlabeled target
data XT and labeled source data XS; target label
budget B and batch size b; target label oracle

1: P ←− {root}, L(root)←− +1
2: for each (x, y) where x ∈ XS, y = fS(x) do
3: UpdateNodeStatistics(x, y, root)
4: end for
5: (P,L)← GetPruningAndLabeling(T)
6: if B > 0 then
7: (P,L)← HSAL(T, {XT,XS}, P, L,B, b, oracle)
8: end if
9: for each v ∈ P do

10: ŷ(x)←− L(v) for each x ∈ X (v)
11: end for
Output: Labeled source and target data: YS =
{(x, ŷ(x)) : ∀x ∈ XS}, YT = {(x, ŷ(x)) : ∀x ∈ XT}.

We begin with cluster tree T over XS ∪ XT, a label
budget B and batch size b, and target label oracle.
On line 1, we initialize P to the root of T and L to
be an arbitrary label. Then in lines 2-4, we update
the label proportion estimates for all nodes, based on
labeled source points. The UpdateNodeStatistics(x, y, v)
subroutine performs this update for all nodes along the
path from x to v in Tv. On line 5, we update P and
L using the GetPruningAndLabeling(Tv) subroutine,
which recursively splits nodes in Tv that have high label
disagreement. If the budget B > 0, we run HSAL on the
mixture of source and target data but using the updated
P and L (lines 6-8). Finally, we impute labels for all
source and target points in lines 9-11 and output the
fully labeled data sets. The UpdateNodeStatistics and
GetPruningAndLabeling subroutines are implemented
as in HSAL and are described in Appendix 7.1

Discussion. Consider P and L at line 5, follow-
ing the initial update and pruning but before any tar-
get label queries. Every cluster v in P must have ei-
ther a clear source majority label L(v) or a proportion-
ally small number of labeled source points (so that L(v)
could not be estimated with high confidence). Other-
wise, v would have been replaced with its children. In
the latter case, the source data in v will play a limited
role during subsequent active learning (line 7), and the
number of target queries required to choose L(v) will

be similar to that in plain HSAL. In the first case, the
source-based L(v) provides a strong bias about the ma-
jority label in v. If most target labels in v agree with
L(v), then the bias is beneficial, and we can achieve a
low label imputation error with few, if any, target label
queries. If, however, most target labels in v disagree
with L(v), then we must query target labels until we
confirm this and split v.

A natural question to ask is under what conditions
HATL might perform poorly or even worse than plain
HSAL? First, suppose that source and target distribu-
tions are quite similar, forming several clear large clus-
ters, but that source and target points within each clus-
ter have the opposite labels. The initial pruning P (line
5) will include large clusters with relatively pure source
labels but high target label imputation error. HATL
may need to query a large number of target labels in
order to find separate source-only and target-only clus-
ters in order to improve its labeling. Meanwhile, HSAL
will discover the large, pure target clusters with a small
number of queries. Thus, HATL requires that the source
and target tasks share reasonably similar labeling func-
tions. We will formalize this intuition in Section 4.

Now suppose that the source and target data share
similar labeling functions but have very different cluster
structures with few overlapping regions. The initial
pruning (line 5) will be pure with respect to source
labels but may not reflect the natural cluster structure
of the target data and may group together source and
target points with different labels. HATL’s initial label
imputation may be superior to that of HSAL, but
HSAL will improve rapidly as it finds the large, pure
target clusters with a small number of queries. HATL,
in contrast, will likely plateau until it queries enough
target labels to discover a pruning that matches the
target cluster structure. Thus, the more similar the
target and source distributions and cluster structure,
the better HATL’s performance. In Section 4 we will
derive an upper bound on the target label imputation
error that incorporates domain similarity.

4 Theoretical Analysis

Here we provide a theoretical analysis of the perfor-
mance of HATL. We begin by stating our main theoret-
ical result, which places an upper bound on the target
label imputation error, given that HATL has queried a
minimum number of labels required to find a relatively
pure pruning of the cluster tree.

Theorem 4.1. Suppose we have constructed a cluster
tree T on over NS source points drawn from DS and
NT target points drawn DT. Choose δ, η > 0 and any
pruning P ∗ of T with label imputation error ε(P ∗) ≤ η.

Now assume that HATL has queried bt labels to discover
pruning P . Then with probability at least 1−δ our target
label imputation error εT(P) is

εT(P) ≤ Õ(ε(P ∗) + η)

+ (1− α)

(
1

2
dH∆H(DS,DT) + ε∗ST

)

+ 2

√
D log(2NT)− log δ

2NT

where bt = Õ
(
|P∗|
η log(2d∗b|P∗|

ηδ)
)

(Theorem 1 from [6])

, α = NT/(NS + NT), dH∆H(DS,DT) is the distance
between the source and target distributions DS and DT

[2], ε∗ST is the combined risk of the ideal hypothesis [2],
t is the number of iterations, b is the batch size (queries
per iteration), D is the VC dimension of the hypothesis
class, and d∗ and |P ∗| are the depth and size of P ∗.

This theorem places an upper bound on the target
label imputation error with three intuitive terms. The
first is related to the overall (source and target) label im-
putation error for optimal P ∗. The second is a distance
measure between source and target data distributions,
weighted by the proportion 1−α of the data that comes
from the source domain. This term is small when our
tasks are similar or when NT � NS. The third comes
from an application of Hoeffding’s inequality for bound-
ing the deviation between empirical and true errors and
will be relatively small when NT is large.

The proof, given below, builds upon Theorem 1
from [6] , which provides a guarantee about the number
of label queries bt needed by HSAL to find a P with
label imputation error no worse than ε(P ∗) + η, where
ε(P ∗) ≤ η. The total number of queries, bt, depends
upon the number of clusters in P ∗, the maximum depth
d∗ of a cluster in P ∗, and choices of δ and η.

4.1 Proof of Theorem 4.1: To prove our theorem,
we begin by introducing several definitions and lemmas.
First, we will use dH distance [11], a hypothesis class-
dependent distance between data distributions:

Definition 4.1. (dH distance [11]) Suppose we
have source and target data distributions DS and DT

and hypothesis class H. We can define a dH distance
[11] between DS and DT as:

dH(DS,DT) , 2 sup
h∈H
|PDS

{Ah} − PDT
{Ah}|

where Ah = {x : x ∈ X where h(x) = +1}, the set of
points classified as positive by h.

The dH distance is the difference between probability
masses assigned by the source and target domains to

Ah, maximized over hypotheses h ∈ H. Throughout
this paper, we will use dH with a specific hypothesis
class H that consists of one nearest neighbor (1NN)
classifiers that can be constructed from points in cluster
tree T that have been relabeled using (P,L).

We actually use the more specialized dH∆H distance
[2], based on the symmetric difference hypothesis class:

Definition 4.2. (H∆H hypothesis class [2])
Define the symmetric difference hypothesis class as

H∆H = {g : g(x) = +1⇐⇒ h(x) 6= h′(x), h, h′ ∈ H}

For each pair of hypotheses h, h′ ∈ H, there exists a g ∈
H∆H such that g(x) = +1 if and only if h(x) 6= h′(x).

Using H∆H we can define the dH∆H distance, for which
the following inequality holds for all h, h′ ∈ H [2]:

|εS(h, h′)− εT(h, h′)| ≤ 1

2
dH∆H(DS,DT)

where εS(h, h′) = P{h(x) 6= h′(x) for x ∼ DS} is the
label disagreement between h, h′ ∈ H on points from
DS. This places an upper bound on the difference
between source and target label disagreement for any
pair of hypotheses in H. εS(h) refers to εS(h, fS), label
disagreement with the true labeling function fS.

We now consider a convex combination of source
and target errors [2], e.g., εαST(h) = (1 − α)εS(h) +
αεT(h) for 0 < α < 1. Lemma 1 from [2] upper
bounds the difference between combined and target risk
for hypothesis h:

|εαST(h)− εT(h)| ≤ (1− α)

(
1

2
dH∆H(DS,DT) + ε∗ST

)
where ε∗ST = min

h∈H
εS(h) + εT(h) is the combined risk

of the hypothesis in H that simultaneously minimizes
source and target error [2]. This quantifies the excess
risk that is due to the difficulty of the task and the dif-
ferences between the labeling functions fS and fT. Most
domain adaptation and transfer learning frameworks re-
quire that ε∗ST be small in order to succeed [2].

Next we prove a lemma that shows that we can
rewrite the label imputation error as a convex combina-
tion of source and target empirical errors:

Lemma 4.1. Suppose we have run HATL on source and
target samples XS and XT and discovered pruning P .
The label imputation error ε(P) can be rewritten as

ε(P) = εαXST
(hP) = (1− α)εXS

(hP) + αεXT
(hP)

where hP is a 1NN classifier induced by P ; εXS
, εXT

,
and εαXST

are the source, target, and combined empirical
errors using XS, XT, and XST = XS ∪ XT; and α =
NT

NS+NT
.

Proof.

ε(P) =
1

NS +NT

(∑
x∈XS

1{hP (x) 6= fS(x)}

+
∑
x∈XT

1{hP (x) 6= fT(x)}

)

=
NS

NS +NT

1

NS

∑
x∈XS

1{hP (x) 6= fS(x)}

+
NT

NS +NT

1

NT

∑
x∈XT

1{hP (x) 6= fT(x)}

= (1− α)εXS(hP) + αεXT(hP), α =
NT

NS +NT

= εαXST
(hP)

The next lemma, adapted from Lemma 2 of [2] , bounds
the deviation between empirical and true combined risk:

Lemma 4.2. Suppose H has finite VC dimension D
and that we have finite samples XS and XT of NS and
NT source and target points, respectively. Then with
probability 1− δ we have

|εαXST
(h)− εαST(h)| ≤

√
D log(2N

δ)

2N

where α = NT

NS+NT
, N = NS + NT, and the expecta-

tion is over finite samples from the source and target
distributions DS and DT, respectively.

Proof. This is a straightforward application of Lemma
2 from [2] , which says that

|εαXST
(h)− εαST(h)| ≤

√
α2

γ
+

(1− α)2

1− γ

√
D log(2N

δ)

2N

where γ = NT/N . In our case, γ = α.

This is a standard Hoeffding inequality bound, assuming
finite VC dimension D. Ordinarily, 1NN classifiers
have infinite VC dimension, but our hypothesis class
is a subset of 1NN classifiers that can be created using
prunings of our cluster tree T . There is only a finite
number of such prunings. Thus, H is a finite hypothesis
space with VC dimension D ≤ log2 |H| [9].

Finally, we combine Lemmas 4.1 and 4.2 with
Theorem 1 from [6] to prove Theorem 4.1. In the
following proof, Steps 1 and 5 are by definition. Steps 2
and 4 apply Lemma 4.2, first to the target-only error
(with NT target points), then to the combined error.
Because NT ≤ N , log(2NT)/NT ≥ log(2N)/N , so we
use NT instead of N so that we have only one square
root term. The actual bound (using N) is tighter.

Step 3 applies Lemma 1 from [2] to upper bound the
combined error. Step 6 applies Theorem 1 from [6] to
place an upper bound on the label imputation error of
P , assuming that we have queried bt labels.

Proof.

εT(P) = εXT
(hP)

≤ εT(hP) +

√
D log(2NT)− log δ

2NT

≤ εαST(hP) + (1− α)

(
1

2
dH∆H(DS,DT) + ε∗ST

)

+

√
D log(2NT)− log δ

2NT

≤ εαXST
(hP) + (1− α)

(
1

2
dH∆H(DS,DT) + ε∗ST

)

+ 2

√
D log(2NT)− log δ

2NT

= ε(P) + (1− α)

(
1

2
dH∆H(DS,DT) + ε∗ST

)

+ 2

√
D log(2NT)− log δ

2NT

≤ Õ(ε(P ∗) + η)

+ (1− α)

(
1

2
dH∆H(DS,DT) + ε∗ST

)

+ 2

√
D log(2NT)− log δ

2NT

4.2 Discussion of Theorem 4.1: This theorem
represents a useful guide to understanding and apply-
ing HATL. We can expect it to perform best when the
source and target distributions are similar and when
we have relatively large data sets. However, we should
be careful when interpreting its guarantees, as it makes
strong assumptions. In particular, it assumes that clus-
ters are selected for querying with probability propor-
tional to size (similar to Theorem 1 from [6]). In trans-
fer learning, we typically begin with m “free” labeled
source points. To apply Theorem 4.1, we must as-
sume that these, too, were sampled at random from a
larger pool of NS ∝ m/(bt − m) source points. This
value will change with each iteration of HATL, but the
source data set is of fixed size. In practice, however,
these assumptions should have minimal impact.

5 Experimental Results

Now we present experimental results that confirm
our intuition and analysis and deepen our under-
standing of HATL. All code and data for these ex-
periments (including implementations of HSAL [6],
TIWCAL [10], and JOTAL [4]), may be found at
http://www-bcf.usc.edu/∼liu32/code.html.

5.1 Synthetic data: We design a series of one-
dimensional synthetic data sets to examine the behav-
ior of HATL and compare its performance with HSAL
under different conditions. We create a single target
domain and five source domains (S1 − S5) of varying
similarity to the target domain, as visualized in Fig-
ure 1a. The target data fall into four distinct clusters
of equal size and extent, while each source domain has
between two and four clusters of different sizes and at
different locations. All domains share the same labeling
function: we divide the real line into four regions with
alternating labels. For our experiments, we sample 25
data sets with 200 points each from each domain.

Measuring domain similarity: We approximate
the dH∆H distance (denoted d̂H∆H) using a domain
separator hypothesis [15], i.e., a classifier trained to
distinguish source from target points. The accuracy of
this classifier is proportional to the distance between
distributions: the more separable the classes, the more
different their distributions. We use a 1NN classifier
(the type of classifier induced by HATL) as our domain
separator and its mean accuracy (estimated via 10-fold

cross validation) as the d̂H∆H distance.
Label imputation error: Figure 1b shows tar-

get label imputation error versus target label queries
for HSAL and HATL using S1, S3, and S5. We re-
port mean performance (with 95% confidence intervals)
across all 25 data samples from each domain. HATL
provides substantial benefit over HSAL, particularly
with few queries. It takes HSAL over 20 queries to
reach a mean error of 0.1. Using S1, HATL reaches 0.1
with 15 queries (a 25% reduction) and dominates HSAL
through all 50 queries. Using S2 HATL outperforms
HSAL through the first 15 queries and is competitive
thereafter. S5 provides an early benefit but increases
HATL’s error in the long run. This is not surprising:
S5 has the highest d̂H∆H distance and minimal cluster
overlap. This is an example of a persistent negative bias
leading to a plateau, as discussed in Section 3.3.

Tightness of Theorem 4.1: We are also inter-
ested in exploring the tightness and utility of the bound
in Theorem 4.1. While it is intuitive and delivers in-
sight into the strengths and limitations of HATL, such
bounds are known to be loose in practice. We can
rewrite it as bounding the deviation between the tar-

get and optimal overall label imputation errors:∣∣∣εT(P)− Õ(ε(P ∗) + η)
∣∣∣ ≤ 1− α

2
dH∆H(DS,DT)

We have dropped the ε∗ST and square root terms from
the theoretical bound. The former will be negligibly
small since we labeled all synthetic data sets using the
same labeling function. The latter is large because
the synthetic data sets are very small (for NT = 200,
2
√

log(2NT)/(2NT) > 0.25) and will overwhelm the do-
main similarity term. The remaining righthand term is
the weighted similarity between source and target do-
mains, which we can again approximate using the 1NN
domain separator classifier. We will subsequently de-
note this as d̂H∆H. We estimate the lefthand term (the
deviation) as follows: first, we set the label imputation
error threshold η = 0.05 and perform a greedy breadth-
first search for a pruning P ∗ with error ε(P ∗) ≤ η.
Then we run HATL and identify the first iteration where
ε(P) ≤ ε(P ∗) + η. We assume that we have enough
queries to satisfy the assumptions of Theorem 4.1. Fi-
nally, we compute the target-only error εT(P) and the
deviation term. Figure 1c compares the average devi-
ation with the average d̂H∆H distance for each source
data set. The actual deviation is nearly constant across
data sets, between 0.06 and 0.07. The deviation pre-
dicted by d̂H∆H grows faster than the actual deviation.

This is surprising because Theorem 4.1 suggest
that HATL’s performance should improve as dH∆H
distance decreases. We can derive some insight into
why this might not be the case if we consider S2 vs.
S4 (Figure 1d). S2 clearly hurts the performance
of HATL; its initial error is as bad as HSAL, and
it plateaus very early. S4 is nearly perfect from the
beginning. This is because S4 has points lying in all
four regions of the true labeling function and provides a
useful initial bias for HATL. S2 has points concentrated
only in the center two regions. However, S2 has a
lower d̂H∆H distance than S4. This suggests that while
dH∆H is a principled and often useful measure of domain
similarity, it has important limitations. In particular, it
ignores the sometimes complex interaction between the
marginal data and conditional label distributions.

5.2 Sentiment classification: Next, we perform ex-
periments using version 2.0 of the Multi-Domain Senti-
ment Classification (sentiment) data set [3] of Amazon
product reviews. Each product category is treated as a
domain, and the task is to predict the sentiment (pos-
itive or negative) of an individual review based on its
contents. In version 2.0, each category contains 1000
positive and 1000 negative documents, represented as
sparse vector of word and bigram counts from a vocab-
ulary of well over a million unique entries. We reduced

(a) 1D synthetic data sets. (b) Target label imputation error.

S1 (16.24) S2 (71.52) S3 (19.36) S4 (1.00) S5 (48.76)
0

0.05

0.1

0.15

0.2

0.25

Source data

D
e
v
ia

ti
o
n

Tightness of Theorem 1 bound

|ε
T
(P)−(ε(Q)+η)|

(1−α)/2 d
H ∆ H

(c) Tightness of the Theorem 4.1 bound. (d) A higher d̂H∆H outperforms a lower d̂H∆H.

Figure 1: 1D synthetic data experiments. (a) Sources organized vertically by d̂H∆H. (b,d) Mean target label
imputation error for (b) S1, S3, and S5 and (d) S2 and S4. Shading indicates 95% confidence intervals. (c) Actual
vs. predicted absolute deviation between P ’s target label error and P ∗’s overall label error (average number of
queries in parentheses).

the number of features to just over 2000 unigrams and
converted raw counts to log counts. We used 10-fold
cross-validation to estimate the prediction error on the
test set. For each experiment, we choose one category
as the target domain. We start with zero target data
labels and run active learning until all labels have been
queried. For the active transfer learning algorithms, we
use a second category as our source data, choosing 200
positive and 200 negative examples at random to use as
the labeled sample. HATL also uses the remaining 1600
unlabeled source data points in its clustering but does
not have access to the true labels.

We compare HATL’s performance against stan-
dard baselines and competing state-of-the-art algo-
rithms, including HSAL, passive transfer learning (train

on source plus labeled target points chosen at ran-
dom), and joint transfer and batch-mode active learning
(JOTAL)[4]. The reported accuracies use a linear classi-
fier with squared hinge loss and L2 regularization (from
LIBLINEAR [7]). For HSAL and HATL, the classifier is
trained on all training data (including source for HATL)
with imputed labels. Other algorithms are trained only
on data points for which labels are available or queried.

Figure 2 shows results using kitchen as target and
dvd as source. These are among the least similar cat-
egories [3]. The baseline supervised (train on labeled
target data) accuracy for kitchen is 0.8925 ± 0.0121.
The baseline unsupervised transfer learning (train on all
dvd data) accuracy is 0.7850 ± 0.0283. HATL outper-
forms the competing approaches throughout the entire

Sentiment classification: dvd→kitchen

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of label queries

Av
er

ag
e

te
st

 s
et

 a
cc

ur
ac

y

Sentiment classification: dvd−>kitchen

Supervised learning with all labels
HSAL
Passive transfer learning
JOTAL
HTL

Number of label queries

Av
er

ag
e

te
st

 s
et

 a
cc

ur
ac

y

HATL

(a) Test set accuracy through 100 queries.

0 200 400 600 800 1000 1200 1400 1600 1800
0.75

0.8

0.85

0.9

Number of label queries

Av
er

ag
e

te
st

 s
et

 a
cc

ur
ac

y

Sentiment classification: dvd−>kitchen

Supervised learning with all labels
HSAL
Passive transfer learning
JOTAL
HTL

Number of label queries

Av
er

ag
e

te
st

 s
et

 a
cc

ur
ac

y

HATL

(b) Test set accuracy through 1800 queries.

0 200 400 600 800 1000 1200 1400 1600 1800
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of label queries

Av
er

ag
e

ta
rg

et
 la

be
l p

ur
ity

 o
f p

ru
ni

ng

Sentiment classification: dvd−>kitchen

HSAL
HTL

Number of label queries

Av
er

ag
e

ta
rg

et
 la

be
l p

ur
ity

 o
f p

ru
ni

ng

HATL

(c) Target label imputation accuracy.

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

700

Number of label queries

Av
er

ag
e

nu
m

be
r o

f c
lu

st
er

s
in

 p
ru

ni
ng

Sentiment classification: dvd−>kitchen

HSAL
HTL

Number of label queries

Av
er

ag
e

no
. o

f c
lu

st
er

s
in

 p
ru

ni
ng HATL

T

(d) Number of clusters.

Figure 2: dvd-to-kitchen sentiment classification results. Mean test set accuracy through (a) 100 and (b) the
1800 target label queries. (c) Mean target label imputation accuracy of P . (d) Mean size of P .

label query budget (Figure 2a and Figure 2b). The
initial test set accuracy of both HATL and JOTAL is
equivalent to that of the unsupervised transfer learning
baseline and 7 points better than the passive transfer
learner. This suggests that HATL and JOTAL can both
perform unsupervised transfer learning effectively, using
very different approaches. Figure 2c shows that HATL
can also perform semi-supervised learning; with even a
small number of queries, the accuracy for target points
in the clustering is higher than for the test set.

HATL significantly outperforms HSAL. With zero
target labels, HATL is 30 points better than HSAL in
both label imputation accuracy and test set accuracy.
HSAL improves more rapidly over the first few hun-
dred label queries, but HATL continues to outperform
HSAL by at least a few points in accuracy until the very
end. Further, HATL converges to the fully labeled su-
pervised learning performance, just as HSAL does. This
indicates that it avoids negative transfer, successfully
adapting the initial source-based transfer bias based on
the target label feedback that it receives.

6 Discussion and Conclusion

We have described a unified framework for active trans-
fer learning, called Hierarchical Active Transfer Learn-
ing (HATL), which uses the machinery of the well-
known, clustering-based Hierarchical Sampling for Ac-
tive Learning (HSAL) [6]. HATL exploits source and
target domain similarity in the form of shared cluster
structure to impute labels for unlabeled target data and
gradually adapts this transfer as it active queries target
labels. We formalized the intuition behind HATL by
deriving an upper bound on the target label imputation
error that includes terms related to the imputation error
of an optimal pruning and the similarity and respective
sizes of the source and target data sets. We used syn-
thetic data experiments to deepen our understanding
of the error bound and of when and how HATL works.
On a benchmark domain adaptation data set [3], HATL
outperformed its progenitor algorithm, HSAL, and com-
peted with a state-of-the-art active transfer learning
framework [4]. What is more, our results suggest that
this flexible framework can also be used to perform un-

supervised transfer learning and semi-supervised learn-
ing. For future work, we are exploring ways to enable
HATL to adapt more rapidly to target label queries.
One possibility is to reweight source data (based on
cluster proportions) whenever the pruning changes. We
are also experimenting with alternative measures (e.g.,
two-sample tests) of the within-cluster label agreement
between source and target points.

Acknowledgements

The research was partially supported by NSF research
grants IIS-1134990 and IIS-1254206; by the U.S. De-
fense Advanced Research Projects Agency (DARPA)
under the Social Media in Strategic Communication
(SMISC) program, Agreement Number W911NF-12-1-
0034; and by an IBM Faculty Award. David Kale is
supported by the Alfred E. Mann Innovation in Engi-
neering Doctoral Fellowship. The views and conclusions
are those of the authors and should not be interpreted as
representing the official policies of the funding agencies
or the U.S. Government. We also would like to thank
Sanjoy Dasgupta and our anonymous reviewers for their
helpful feedback.

References

[1] A. Beygelzimer, J. Langford, D. Hsu, and
T. Zhang. Agnostic Active Learning Without Con-
straints. In Advances in Neural Information Pro-
cessing Systems (NIPS) 23, pages 199–207. 2011.

[2] J. Blitzer, K. Crammer, A. Kulesza, F. Pereira,
and J. Wortman. Learning bounds for domain
adaptation. In Advances in Neural Information
Processing Systems (NIPS) 20, pages 129–136,
2007.

[3] J. Blitzer, M. Dredze, and F. Pereira. Biographies,
Bollywood, Boom-boxes and Blenders: Domain
Adaptation for Sentiment Classification. In Pro-
ceedings of the 45th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), 2007.

[4] R. Chattopadhyay, W. Fan, I. Davidson, S. Pan-
chanathan, and J. Ye. Joint transfer and batch-
mode active learning. In Proceedings of the
30th International Conference on Machine Learn-
ing (ICML), pages 253–261, 2013.

[5] S. Dasgupta. Two Faces of Active Learning.
Theoretical Computer Science, 412(19):1767–1781,
2011.

[6] S. Dasgupta and D. Hsu. Hierarchical sampling for
active learning. In Proceedings of the 25th Interna-
tional Conference on Machine Learning (ICML),
pages 208–215, 2008.

[7] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin.
LIBLINEAR: A library for large linear classifi-
cation. Journal of Machine Learning Research,
9:1871–1874, 2008.

[8] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf,
and A. Smola. A kernel method for the two-sample-
problem. In Advances in Neural Information Pro-
cessing Systems (NIPS) 19, pages 513–520. 2007.

[9] D. Haussler. Quantifying inductive bias: AI learn-
ing algorithms and Valiant’s learning framework.
Artificial Intelligence, 36(2):177–221, September
1988.

[10] D. Kale and Y. Liu. Accelerating active learn-
ing with transfer learning. In Proceedings of the
IEEE 13th International Conference on Data Min-
ing (ICDM), 2013.

[11] D. Kifer, S. Ben-David, and J. Gehrke. Detecting
change in data streams. In Proceedings of the 30th
International Conference on Very Large Databases
(VLDB), pages 180–191. VLDB Endowment, 2004.

[12] A. Kumar, A. Saha, and H. Daumé III. A co-
regularization based semi-supervised domain adap-
tation. In Advances in Neural Information Process-
ing Systems (NIPS) 23, 2010.

[13] C. Luo, Y. Ji, X. Dai, and J. Chen. Active learning
with transfer learning. In Proceedings of ACL 2012
Student Research Workshop, pages 13–18, 2012.

[14] S. J. Pan and Q. Yang. A survey on transfer
learning. IEEE Transactions on Knowledge and
Data Engineering, 22(10):1345–1359, Oct 2010.

[15] P. Rai, A. Saha, H. Daumé, and S. Venkatasubra-
manian. Domain adaptation meets active learning.
In Proceedings of the NAACL HLT 2010 Workshop
on Active Learning for Natural Language Process-
ing, pages 27–32, 2010.

[16] R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng.
Self-taught learning: transfer learning from unla-
beled data. In Proceedings of the 24th Interna-
tional Conference on Machine Learning (ICML),
pages 759–766, 2007.

[17] B. Settles. Active Learning, volume 6 of Synthesis
Lectures on Artificial Intelligence and Machine
Learning Series. Morgan & Claypool Publishers,
June 2012.

[18] L. Yang, S. Hanneke, and J. Carbonell. Identifi-
ability of priors from bounded sample sizes with
applications to transfer learning. pages 791–808,
2011.

[19] L. Yang, S. Hanneke, and J. Carbonell. A Theory
of Transfer Learning with Applications to Active
Learning. Machine Learning, 90(2):1–28, 2012.

7 Appendix

7.1 HSAL: Algorithm 2 shows original HSAL al-
gorithm, adapted from [6, Algorithm 1], which we use
as a subroutine in HATL. Below we provide a high-level
description of how it works and of notation. We direct
readers interested in further detail to [6].

Algorithm 2 Hierarchical Sampling for Active Learn-
ing (HSAL) [6]

1: Input: Hierarchical cluster tree T of labeled
and unlabeled data X , including optional instance
weights; initial pruning P and labeling L; active
learning label budget B, batch size b, and oracle

2: q ←− 0 // number of label queries made so far
3: repeat
4: Q← {} // list of queried nodes
5: for i = 1 to b do
6: (v, x)←− ChooseNextQuery(P)
7: y ←− oracle(x), Q←− Q ∪ {v}
8: for u ∈ T where x ∈ X(u) do
9: UpdateNodeStatistics(x, y, u) // counts, esti-

mates and bounds, admissibility, score
10: end for
11: end for
12: for each v ∈ Q do
13: (Pv, Lv)← GetPruningAndLabeling(Tv)
14: P ← (P \ {v}) ∪ Pv // replace v with u ∈ Pv
15: L(u)←− Lv(u) for each u ∈ Pv
16: end for
17: until q ≥ B or no unlabeled data remain
18: for each v ∈ P do
19: ŷ(x)←− L(v) for each x ∈ X(v)
20: end for

The algorithm takes as its input a hierarchical
clustering (in the form of a tree T) over all data points,
optionally including some labels (e.g., when called from
HATL). A tree Tv contains a hierarchy of nodes rooted
at node v (where T = Troot). If we descend far enough
down Tv, we reach a leaf node x, which is in fact a
data point. Denote the set of data points associated
with an arbitrary node v as X(v) =

⋃
u:ch(v)X(u),

i.e., v is associated with all of its children’s points.
Trivially, X(x) = x. A pruning Pv of tree Tv is a
subset of v’s descendant nodes containing all points
associated with v: X(v) = ∪u:desc(v)X(u). P is the
pruning of the complete tree T . A labeling L(v) is a
mapping of a node v to a label. We typically work
with a pruning/labeling pair (P,L). The algorithm
begins with an initial pruning P = {root} and labeling
L(root) = +1, i.e., our pruning is just the root of T and
we assign all data points the same arbitrary label.

The active learning loop is performed in lines 3-

17, where we iteratively query a batch of b labels and
update our node statistics, pruning P , and labeling L,
until our budget B is spent or no unlabeled target points
remain. We choose query t using ChooseNextQuery
(line 11). Typically, we first select a node v from
current pruning P and then choose a unlabeled point
x ∈ X(v) at random. The node selection procedure
determines the nature of our active learning strategy. [6]
recommends choosing v with probability proportional
to the product of its size and estimated label purity
(p(v) ∝ wv(1 − pLB

v,L(y)) using notation defined below).
We maintain a list Q of nodes from which we have
queried labels.

Now suppose for our query t, we receive label y for
point x ∈ X(v) and node v ∈ P . In lines 8-10, we
perform a bottom-up pass of updates to all nodes u
such that x ∈ X(u) (i.e., nodes along the path from x
to v). We first add one to the number of observations of
label y for u and compute an estimate of and lower and
upper bounds on the expected fraction of points with
label y in X(u) (denoted pu,y(t), pLB

u,y(t), and pUB
u,y(t)).

We then determine which labels are admissible for u; an
admissible label is one that we are willing to assign to all
points x ∈ X(u) because its label fraction bounds meet
some criterion. For example, with two labels, we might
require that plu,y(t) > 1/3 for y to be admissible. Note
that admissibility persists (once y is admissible for u, it
remains so). Next we choose u’s best label yu(t), if any,
from among all admissible labels and then determine
its score su(t) = min{s′u(t), w`/wusl(t) + wr/wusr(t)},
i.e., the minimum of s′u(t) and a weighted sum of the
scores of its left and right children `, r (a node v’s
weight is proportional to its size wv ∝ |X(v)|). Here
su(t) = 1 − pLB

u,y if yu(t) exists and s = 1 otherwise
(i.e., the expected error if we assign u its best label, if
any). This means that su(t) is determined by whether
we expect better labeling from assigning u its best label
or from splitting u into its children; in the latter case,
we mark this node for splitting.

After a batch of b label queries and updates, we
update our pruning P and labeling function L (lines
12-16). For each queried node v, we examine whether
it should be split. If not, we keep it; if so, we replace it
with its children and then recurse down the tree. In this
way we determine the optimal pruning Pv and labeling
Lv of Tv, which we then use to update P and L. Once we
have exhausted our query budget, we iterate over nodes
v in our pruning and assign label L(v) as the label to
all points x ∈ X(v) (lines 18-20).

