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Active learning challenge: cold starts (start with 0 labels)
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Test set performance improves very slowly vs. # points, queries.
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Fight cold starts by starting with labeled data

Common applied AL heuristic: seed base learner with labeled data.

What if data comes from different task? Use transfer learning (TL).

Desired properties in an active+transfer learning framework:

• Improve test set performance with few or no target label queries.

• Converge to same or better performance vs. plain AL.

• Theoretically sound.∗ Build on body of theoretical AL, TL research.

• Easy to implement and understand, flexible, fast.

∗ “Anything which is inconsistent isn’t a complete solution.”
- email from prominent AL researcher
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Consistent online active learning

Goal: learn target classification task T in online setting
Input: stream of target data, target oracle

Algorithm: Online IWAL CAL (original paper: [1])

Let H1 := H
For t = 1, . . .

Compute Gt: disagreement about h(xt) among h ∈ Ht
Flip coin with P (heads) = pt ≈ O(min{1, 1/Gt})
If heads, then query label yt, set wt := 1/pt
else set yt := 0, wt := 0 (i.e., ignore xt)
Let Ht+1 = {h : h consistent with (xi, yi, wi) for i = 1, . . . , t}

• Gt := ε̄t−1(h̄′t−1)− ε̄t−1(h̄t−1) where h̄′(xt) 6= h̄(xt)

• Importance weighted error: ε̄t(h) = 1
t

∑t
i=1wi1(h(xi) = yi)
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Combining transfer and active learning

Use IWAL CAL with a convex combination of empirical risks [2]. ε̄t is
importance weighted empirical target error, ε̂S is source empirical error.

Definition (Combined weighted empirical risk)

For hypothesis h ∈ H, α ∈ [0, 1], after seeing t target points, let

ε̄α,t,m(h) , αε̄t(h) + (1− α)ε̂S(h)

=
α

t

t∑
i=1

wi1(h(xi) 6= yi) +
1− α
m

m∑
j=1

1(h(xj) 6= yj)

=
1

m+ t

m+t∑
i=1

vi1{h(xi) 6= f(xi)}

vi =


(1− α)(m+ t)/m i ≤ m (source)
α(m+ t)/(tpi) i > m (target), labeled

0 i > m (target), unlabeled
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Consistent online transfer active learning

Substitute combined weighted error for original importance weighted error.

Goal: learn target classification task T in online setting
Input: m labeled source data, stream of target data, target oracle

Algorithm: Online TIWAL CAL

Let H1 := {h : h(x) = y for all source x ∧ h ∈ H}
For t = 1, . . .

Compute G′t: disagreement about h(xt) among h ∈ Ht
Flip coin with P (heads) = pt ≈ O(min{1, 1/Gt})
If heads, then query label yt, set wt := 1/pt
else set yt := 0, wt := 0 (i.e., ignore xt)
Let Ht+1 = {h : h consistent with (xi, yi, wi) for i = 1, . . . , t}

• G′t := ε̄α,t−1,m(h̄′t−1)− ε̄α,t−1,m(h̄t−1) where h̄′(xt) 6= h̄(xt)
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How good are the classifiers we learn?

Theorem (Upper bound on target generalization error)

For h̄t = arg minh∈H ε̄α,t,m(h), this holds with probability at least 1− δ:

εT(h̄t) ≤ εT(h∗T) + αÕ

(
C0 log t

t

)
+ (1− α)Õ

(
C0

m
+ d(S,T) + ε∗ST

)

Decomposes into two error terms, one each active and transfer learning:

• AL part: Õ
(
C0 log t

t

)
shrinks as t grows

• TL part: constant; depends m and source/target similarity
• d(S,T): distance between source, target distributions (we use dH∆H

distance [2]; can approximate with domain separator hypothesis)
• ε∗ST = minh εS(h) + εT(h) (assumed to be negligible)

• Trade off using α parameter
• Small α: when tasks similar, m large; reduces number of queries
• Large α: when tasks different or m small; behaves like IWAL CAL
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Test set error vs. # label queries: 20 Newsgroups
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Test set accuracy vs. # queries for 20 Newsgroups (BvP)
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Test set error vs. # label queries: sentiment [3]
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Test set accuracy vs. # queries for sentiment (kitchen)
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Conclusions

Transfer learning can “accelerate” active learning, address cold starts!

Our framework

• works! Trivial to extend to pool-based active learning.

• is simple. Complicated transfer learning not required.

• is easy to implement (once you understand IWAL CAL).

• is theoretically sound. Yields insights into problem and applications.

Our work provides a foundation for future work:

• More extensive experimentation. Apply to further problems, data sets.

• Adapt transfer as see more target data [4] [5].

• Experiment with more aggressive active learning algorithms.

• Other problems (e.g., regression), types of queries (e.g., features)

• Try more “extreme” transfer learning (e.g., different features).
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This is a great topic to work on!

Human beings use active+transfer learning every day.

It’s also on the frontier of learning theory research. From John Langford’s
blog entry, The End of the Beginning of Active Learning, posted on April
20, 2011 (http://hunch.net/?p=1800):

“...unlabeled data can suggest learning biases that may improve
performance over supervised learning, especially when labeled data are
few...A basic observation is that active learning provides the opportunity
to validate or refute these biases using label queries, and also to
subsequently revise them. Thus, it seems that active learners ought to be
able to pursue learning biases much more aggressively than passive
learners. A few works on cluster-based sampling and multi-view active
learning have appeared, but much remains to be discovered.”
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The end!

Thanks for listening!

Special thank yous to

• USC Melady Lab, especially Taha Bahadori and Marjan Ghazvininejad

• Sanjoy Dasgupta (UCSD), John Langford (MSR), Byron Wallace
(Brown)

Ask me about

• The three years I spent working at Children’s Hospital LA

• Meaningful Use of Complex Medical Data: http://mucmd.org

• AAAI 2014 workshop on Artificial Intelligence for health
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