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Abstract—Active learning, transfer learning, and related tech-
niques are unified by a core theme: efficient and effective use
of available data. Active learning offers scalable solutions for
building effective supervised learning models while minimizing
annotation effort. Transfer learning utilizes existing labeled data
from one task to help learn related tasks for which limited labeled
data are available. There has been limited research, however, on
how to combine these two techniques. In this paper, we present
a simple and principled transfer active learning framework that
leverages pre-existing labeled data from related tasks to improve
the performance of an active learner. We derive an intuitive bound
on the generalization error for the classifiers learned by this
algorithm that provides insight into the algorithm’s behavior and
the problem in general. We provide experimental results using
several well-known transfer learning data sets that confirm our
theoretical analysis. What is more, our results suggest that this
approach represents a promising solution to a specific weakness
of active learning algorithms: cold starts with zero labeled data.

I. INTRODUCTION
In the age of the “data tsunami,” we are confronted with a

central challenge: how do we efficiently and effectively learn
from massive amounts of data? Supervised learning remains
the dominant learning paradigm for many practical problems,
and many supervised learning problems can be formulated as
classification. Learning a classifier requires class labels, which
can be difficult or expensive to acquire in large quantities. In
response to this dilemma, researchers have developed active
learning. An active learner is given access to an (often human)
oracle that can label data, a limited budget to spend on
acquiring labels, and the freedom to choose which observations
to label [1]. The goal of active learning is to build an effective
classifier with as few label queries as possible.

Recent theoretical breakthroughs have produced active
learning algorithms that are practical and have strong statistical
consistency and unbiased sampling guarantees [2]. Neverthe-
less, there remain significant barriers to wider adoption of
active learning. One challenge that has both practical and
theoretical implications is the cold start phenonemon. Active
learning requires a good classifier to generate useful label
queries; training a good classifier requires labeled data. If the
active learner begins with zero labeled data, then it must query
labels at random until it has enough to train a good classifier.
Thus, early in the query process or when the labeling budget is
small, active learning offers little or no advantage over passive
learning [3]. What is more, classifier performance (e.g., test set
error) often improves slowly as a function of the number of
label queries. The cold start problem has not been studied in
earnest, although a number of approaches (e.g., cluster-based
active learning) offer potential remedies [4].

Another promising solution to the cold start problem is

transfer learning. The intuition behind transfer learning is that
learning a new task should be easier if we transfer knowledge
from previously learned tasks [5]. Related (or source) tasks
often take the form of labeled data sets that are “similar” to
our target task data. Examples include product reviews from
different categories [6] or clinical trials data from different
hospitals [7]. In these settings, straightforward supervised
learning (train a model on source data, then apply it to target
task) often produces models that perform poorly. However,
with a proper transfer learning framework, we can use source
data to improve our ability to learn the new task, especially
when little or no labeled target data is available.

This suggests a strategy for addressing the cold start
problem in active learning: use transfer learning to initialize
the active learner using data from a related task. In this way,
the active learner begins with a classifier to guide early label
queries, eliminating the need to query at random. If the transfer
from the source task is effective, then the active learner should
begin with a good classifier and require many fewer target
label queries to improve it. This would mitigate the cold start
problem. If transfer learning produces a poor classifier, the
active learner may be forced to query many more target labels
in order to recover. In this way, we can understand transfer
learning as providing an initial bias to the active learner. A
good framework for combining transfer and active learning
should provide a way to measure the impact of the transfer-
based bias on the active learner’s behavior and performance.

In this paper, we describe a simple, principled approach to
transfer-initialized active learning, based on two relatively new
frameworks for transfer learning [8] and active learning [2].
This approach is easy to implement and efficient, and it permits
a theoretical analysis that provides insight into the interaction
between these two learning paradigms. We derive a bound on
the generalization error that relates target task performance to
the similarity between source and target tasks. We identify
a trade-off between potential sources of error that can be
exploited to produce effective transfer active learners. We
present experimental results that confirm our theory and show
that this approach accelerates active learning. We conclude by
identifying the most fruitful directions for future research.

II. RELATED WORK
To our knowledge, there has been only a handful of papers,

most of them quite recent, exploring the combination of trans-
fer learning and active learning [9], [10]. [11] combines uncer-
tainty region sampling with several transfer learning concepts,
including the use of a domain separation classifier trained to
distinguish between unlabeled source and target samples. The
authors provide convincing empirical results on a number of
standard transfer learning tasks, as well as a simple analysis



of label complexity and error rates. [12] describes a novel
active transfer learning framework that combines sample re-
weighting with batch mode active learning, which chooses all
of its label queries simultaneously. What makes this approach
especially interesting is that it uses a different set of criteria
to select queries: diversity among labeled samples and distri-
butional similarity between labeled and unlabeled target data.
Their empirical results indicate that this approach can be used
to build effective classifiers with a small number of target label
queries. Unfortunately, most of these approaches are heuristic
in nature and lack guarantees for consistency and sampling
bias. The most notable exception is [7], which presents a
theoretically rigorous Bayesian framework for active transfer
learning, based on prior-dependent learning. Assuming a prior
distribution over target concepts (i.e., classifiers) greatly ac-
celerates active learning, and the authors show that the prior
is identifiable from a finite number of labeled examples in
sequential multitask settings. The empirical effectiveness of
this approach remains an open question.

III. METHODOLOGY
Our approach to transfer active learning combines two

principled learning frameworks. For transfer learning, we use
a convex combination of source and target empirical risks [8].
For active learning, we use the importance weighted consistent
active learner (IWAL CAL) algorithm [2]. We provide a brief
overview of each and then describe how to combine them in
order to address the cold start problem.

A. Transfer learning framework
Formally, we define a task or domain as a distribution D on

a set of points X paired with a labeling function f : X 7→ Y ,
where Y = {±1}. In transfer learning, we seek to transfer
knowledge from a source domain 〈DS, fS〉 to a target domain
〈DT, fT〉 of interest. When learning we search over a hypothe-
sis space H for a function h : X 7→ Y that does a good job of
predicting the true f(x) for any point x ∈ X . We measure the
quality of a hypothesis h by its risk, relative to a domain (e.g.,
the target domain T): εT(h, fT) = Ex∼DT [1{h(x) 6= fT(x)}]
where 1 is the indicator function. The empirical risk of a
hypothesis, relative to a finite sample {x1, . . . ,xn}, is defined
as ε̂T(h, fT, (x)1:n) = 1

n

∑n
i=1 1{h(xi) 6= fT(xi)} where

(x)1:n is a notational convenience. When it is clear from
context, we will use shorthand, such as εT(h) and ε̂T(h, n).

Our goal is to choose a hypothesis to minimize the target
risk (h∗ = arg minh∈H εT(h)), though this is impossible in
practice. Instead we minimize a weighted sum of empirical
risks ε̂α(h) = αε̂T(h, f, (x)1:n)+(1−α)ε̂S(h, f, (x)1:m) with
scalar weight α ∈ [0, 1]. We assume access to m > 0 labeled
source examples and n ≥ 0 labeled target examples.

This approach to transfer learning is attractive because of
its simplicity and elegant theoretical properties. [8] derives
an upper bound on the target generalization error of ĥ =
arg minh∈H ε̂α(h), the classifier that minimizes the combined
empirical risk. This bound includes two particularly interesting
terms that quantify the similarity between domains. The first
is a hypothesis-dependent measure of the similarity between
the source and target data distributions DS and DT. Even if
the domains share the same labeling function (i.e., fS = fT),
training examples with different distributions may produce
different classifiers. We define the dH distance between two

distributions:

dH(DS,DT) = 2 sup
h∈H
|PDS{Ah} − PDT{Ah}|

where Ah = {x : x ∈ X where h(x) = +1}. This is
the maximum possible difference between probability masses
assigned by our domains to a set Ah of points classified as
+1 by any hypothesis h ∈ H. Now let H∆H = {g : g(x) =
+1 if h(x) 6= h′(x) for given h, h′ ∈ H} be the symmetric
difference hypothesis space. Additionally, let εS(h, h′) be the
disagreement between two hypotheses h, h′ ∈ H about the
labels of points drawn from DS (likewise for εT and DT).
Then we can define a distance dH∆H for which the following
inequality holds for all h, h′ ∈ H:

|εS(h, h′)− εT(h, h′)| ≤ 1

2
dH∆H(DS,DT)

This distance places an upper bound on the difference between
source label and target label disagreement between any two
hypotheses h, h′ ∈ H. dH∆H has two useful properties: first,
for any H with finite VC dimension, it can be computed from
finite unlabeled samples US ∼ DS and UT ∼ DT [13]. Second,
it can be approximated using a domain separator hypothesis,
i.e., a classifier from H trained to separate US and UT [14].

The second term of interest is the combined source and
target risk: ε∗ST = minh∈H εS(h)+εT(h). This can be thought
of as a general measure of the similarity between the source
and target domains. A small ε∗ST implies the existence a
hypothesis h ∈ H that simultaneously minimizes source and
target risk, which in turn implies minimal differences between
data distributions and labeling functions. This corresponds to
the traditional transfer learning assumption that domains are
“sufficiently similar” [8]. We assume that ε∗ST is negligible but
acknowledge that this may not be true in real applications.

B. Active learning framework
IWAL CAL is an importance weighted mellow active

learner designed for online learning settings: rather than choos-
ing from a pool, it waits as points “arrive” in streaming fashion
and queries each label with some probability. When a point’s
label is queried, it is assigned an importance weight inversely
proportional to its query probability. Importance weights cor-
rect for bias that accrues during selective sampling. After
seeing t points, we choose a classifier h̄t to minimize the im-
portance weighted empirical risk ε̄(h, t) = ε̄(h, f, (x, w)1:t) =
1
t

∑t
i=1 wi1{h(xi) 6= f(xi)}. [2] proves that this is an

unbiased estimate of the true risk and provides a nice deviation
bound for it. When compared with aggressive active learners
(e.g., uncertainty region sampling), mellow active learners
often exhibit a slower rate of improvement in performance as a
function of the number of queries. However, they have sounder
theoretical properties and are more conducive to analysis [3].

Formally, for the tth unlabeled point xt, IWAL CAL
queries the label yt = f(xt) with probability pt computed
using a rejection threshold function p((x, q, w)1:t−1,xt). Here
qi is a binary indicator of whether the ith label was queried,
and wi = 1/qi is the importance weight (bounded from
above since pi > 0). (x, q, w)1:t is a notational conve-
nience for {(x1, q1, w1), . . . , (xt, qt, wt)}. We can now rede-
fine ε̄ over all points seen: ε̄(h, t) = ε̄(h, f, (x, q, p)1:t) =
1
t

∑t
i=1

qi
pi
1{h(xi) 6= f(xi)}. Unlabeled points have qi = 0

and so are ignored in the error. This risk estimator is unbiased;
notice that E [Qi/pi] = E [Qi] /pi = pi/pi = 1 [2].



After seeing t − 1 samples, IWAL CAL uses them to
implicitly maintain a space Ht−1 of candidate hypotheses
that with high probability contains h∗, the optimal classifier
in H. The probability pt of querying the label for xt is
inversely proportional to the level of disagreement in Ht−1.
The difference between the importance weighted empirical risk
ε̄(h, t−1) and the true risk ε(h) is bounded, giving us a method
to compute pt. Let h̄t−1 = arg minh∈H ε̄(h, t − 1) be the
hypothesis that minimizes the importance weighted empirical
error. Next let h̄′t−1 be the hypothesis that minimizes this error
but disagrees with h̄t−1 on xt’s label: h̄′t−1(xt) 6= h̄t−1(xt).
Then Gt = ε̄(h̄t−1, t − 1) − ε̄(h̄′t−1, t − 1) is an estimate of
the disagreement within Ht−t about the label of xt. If Gt
exceeds the upper bound on disagreement, then h̄t−1 likely
agrees with h∗ on xt and so it is probably unnecessary
to query xt’s label. Thus, the label for xt is queried with
probability pt ≈ min

{
1,
(
1/G2

t + 1/Gt
)
C0 log(t)/(t− 1)

}
where C0 = O(log(|H|/δ)) [2].

C. Transfer active learning
We now assume that an IWAL CAL active learner has

access to m labeled points from the source domain and has
seen t points from the target domain. We can define a new
weighted empirical risk over these m + t points, where the
weights depend on m and t, the α parameter, and the IWAL
CAL importance weights qi/pi:

Definition 1. We define a combined weighted empirical risk
for transfer-accelerated active learning as

ε̄α(h,m, t) , αε̄T(h) + (1− α)ε̂S(h)

or equivalently

ε̄α(h,m, t) ,
1

m+ t

m+t∑
i=1

wi1{h(xi) 6= f(xi)}

where

wi =


(1−α)(m+t)

m i ≤ m (source)
α(m+t)
tpi

i > m, qi = 1 (labeled target)

0 i > m, qi = 0 (unlabeled target)

These can be shown to be equivalent with a simple derivation.
The first form is easier to analyze, allowing us to leverage
the results from [2] for IWAL CAL and from [8] for transfer
learning. The second form is easier to implement as it per-
mits us to use any supervised learning routine that accepts
individually weighted training data. Algorithm 1 shows pseu-
docode for our Transfer IWAL CAL (TIWAL CAL) algorithm.
It uses the combined weighted empirical risk in Steps 3-
6 of the algorithm. Gboundt = α

(√
C0 log t
t−1 + C0 log t

t−1

)
+

(1 − α)
√

C0 log 2
2m is the upper bound on the disagreement

within Ht−1. To obtain pt, we solve the quadratic equation
Gt = α

(
c1√
pt
− c1 + 1

)√
C0 log t
t−1 +α

(
c2
pt
− c2 + 1

)
C0 log t
t−1

+(1−α)
√

C0 log 2
2m . The constants C0, c1, and c2 can be treated

as tunable parameters but are defined for analysis as follows:
C0 = O(log(|H|/δ), c1 = 5+2

√
2, and c2 = 5. This algorithm

uses labeled source data to provide the active learner with a
transfer-based bias that can improved by labeling target data.
In the next section, we show that TIWAL CAL’s behavior and
performance depend upon the similarity between source and
target domains and the value of α.

Algorithm 1 Transfer IWAL CAL
1: for t = 1, 2, . . . until target samples exhausted do
2: Receive unlabeled xt
3: Compute weights (w)1:(t−1) as in Definition 1.
4: Choose h̄t−1 = arg min

h∈H
ε̄α(h, t− 1)

5: Choose h̄′t−1 = arg min
h∈H:h(xt) 6=h̄t−1(xt)

ε̄α(h, t− 1)

6: Set Gt = ε̄α(h̄′t−1, t− 1)− ε̄α(h̄t−1, t− 1)
7: if Gt ≤ Gboundt then
8: Set pt = 1
9: else

10: Solve for pt (see below)
11: end if
12: Sample qt ∼ Bernoulli(pt)
13: if qt = 1 then
14: Query label yt
15: Set wt = 1/pt
16: end if
17: end for
18: return h̄t = arg min

h∈H
ε̄α(h, t), (x, y, q, 1/p)1:t

D. Deviation and generalization bounds
We provide two useful bounds that codify the above

intuition and guide the application of our algorithm. Lemma
1 places an upper bound on the deviation of the combined
weighted empirical risk ε̄α(h,m, t) from the true combined
risk εα(h,m, t). This directly motivates Steps 6-10 of Algo-
rithm 1, in which we compute Gboundt and pt and decide
whether to query xt’s label.

Lemma 1. With probability at least 1− δ, the following holds
for all t ≥ 1 and all h ∈ H:

|(ε̄α(h,m, t) −ε̄α(h∗α,m, t))− (εα(h)− εα(h∗α))|

≤ α
(√

εt
pmin,t(h)

+
εt

pmin,t(h)

)
+ (1− α)

√
εS

where εt = O (log(t|H|/δ)/t), εS = O (log(2|H|/δ)/(2m)),
and pmin,t(h) is the minimum query probability assigned to a
target point about whose label h and h∗ disagree.

The proof of this lemma involves decomposition of the com-
bined empirical risk, followed by an application of the triangle
inequality and Hoeffding’s inequality.1 Theorem 1 places an
upper bound on the target risk of h̄t.

Theorem 1. For h̄t = arg minh∈H ε̄α(h,m, t), the following
holds with probability at least 1− δ:

εT(h̄t) ≤ εT(h∗T) + α

(√
2C0 log(t+ 1)

t
+

2C0 log(t+ 1)

t

)

+ 2(1− α)

(√
C0 log 2

2m
+

1

2
dH∆H(DS,DT) + ε∗ST

)
The proof proceeds along lines similar to that of Theorem 2
from the appendix of [8].1

1 Complete proofs are available at http://www-scf.usc.edu/˜dkale/
active-transfer/.



Implication: This is an interesting and intuitive bound that
trades off two sources of error via the parameter α. The active
learning error term (with coefficient α) decreases as t grows
large but may be significant early on. The transfer learning
error term (with coefficient 1 − α) depends primarily upon
the number of source points m and upon the dissimilarity of
our source and target domains, which is determined primarily
by the dH∆H distance since we assume ε∗ST is small enough
to be ignored. The transfer learning error can be viewed as
constant; it does not depend directly on t or change as we
query labels. If the domains are substantially different and
transfer learning error is high, an injudicious choice of α can
introduce a large and constant negative bias, from which the
active learner may never recover and which may increase the
overall number of queries made. If the domains are sufficiently
similar and transfer error is small, then a careful choice of
α should significantly improve performance early on in the
query process and reduce the overall number of queries. [8]
gives a detailed analysis of choices of α that also applies here.
A rule of thumb is that lower values of α should work well
when the domains are similar and we have a lot of source data.
Otherwise, we should use a higher value of α or even consider
plain active learning.

IV. EXPERIMENTS
We compare IWAL CAL and TIWAL CAL using two

publicly available transfer learning data sets.2 For each, we
choose a target domain and divide it into a test set and two
training sets. The first is treated as unlabeled to start and is
used for active learning. The second is treated as a labeled
source domain. We also choose two additional labeled source
domains. We then compare the test set error and query rates
of TIWAL CAL against IWAL CAL.

The details of our data sets are shown in the table in
Figure 3. These include approximate d̂H∆H distances using
a linear domain separator and hinge loss. Our base learner
is a linear model with hinge loss and L2-regularization. For
the free parameters in TIWAL CAL, we follow [2] by setting
c1 = c2 = 1 and dropping the log(t) terms when computing
Gboundt and pt. We use a heuristic to learn the constrained
hypothesis h̄′t: set the instance weight for xt to be equal to
the sum of the weights for the rest of the training data. The
above changes result in an approximation to our the abstract
algorithm that works in practice. We use C0 = 0.25 for IWAL
CAL and 25 ≤ C0 ≤ 100 for TIWAL CAL.

A. Data
20 Newsgroups: Our first data set is the 20

Newsgroups data set. We create a handful of “category
versus category” classification tasks. Our target
domain is a subset of rec.sport.baseball vs.
talk.politics.misc (BvP). Our source domains
include a second subset of rec.sport.baseball vs.
talk.politics.misc (BvP2), rec.sport.hockey
vs. talk.religion.misc (HvR), and rec.autos
vs. soc.religion.christian (AvC). The original
20 Newsgroups data has 61,188 word counts, which we
convert to log term frequency. We then reduce the number
of features by keeping only the 250 words with the top
term-frequency inverse document-frequency (TF-IDF) scores

2 Code and data to reproduce our experiments can be found at
https://github.com/uscmelady/active-transfer.

across all categories. This is an efficient way to choose a
small number of interesting features without using labels [15].
It also changed the d̂H∆H distance between domains, making
for interesting experiments.

Sentiment: Our second data set is the sentiment classifica-
tion data set [6]. We use the preprocessed binary (“positive” vs.
“negative” review) version, with a subset of kitchen as our
target domain and a second subset of kitchen (kitchen2),
dvd, and electronics as our source domains. The pre-
processed version of the data includes 1,110,352 unigram and
bigram count features. As with 20 Newsgroups, we convert
these to log counts and then keep only the 1000 features with
the top TF-IDF scores across all domains.

B. Results
Typical results are shown in Figures 1 and 2. The first

thing to observe is that basic IWAL CAL falls prey to the
cold start phenomenon. For sentiment, IWAL CAL requires
nearly 400 queries to reach error of 0.20 or less and thousands
of queries before it reaches the same performance as fully
supervised learning. On the easier 20 Newsgroups data set,
IWAL CAL still needs 200 queries to achieve the supervised-
level performance (error of 0.10). The results for TIWAL CAL
are consistent with our analysis: the transfer learning bias
drastically improves test set error early in the query process
(with early error rates near optimal) and reduces the overall
number of queries by as much as 50%. Further, TIWAL CAL
often converges to nearly the same error rate as IWAL CAL,
suggesting little or no negative bias. The exceptions to this
pattern are the AvC and dvd source domains. Both yield less
early improvement in test set error, and dvd actually increases
the overall number of queries. These results are explained by
our theory: each has a relatively high d̂H∆H distance with its
respective target domain. Nonetheless, even for these sources,
there is still an early 30-40% reduction in error, while the
“penalty” on future test set error is relatively small (TIWAL
CAL converges to a 5-10% higher error).

V. DISCUSSION
Researchers are increasingly interested in how to introduce

useful biases into active learning without compromising con-
sistency guarantees.3 This will allow active learners to produce
good classifiers faster, mitigating the cold start problem. In
this paper, we presented a principled framework that addresses
cold starts by using transfer learning to leverage data from
related tasks. Our framework is straightforward to analyze
and apply. We proved a generalization bound that provides
intuition into the problem and helps trade off different sources
of error. We demonstrated empirical results that suggest this
approach significantly improves classifier performance early
in the query process and reduces the overall number of target
label queries. In other words, we can accelerate active learning
with transfer learning. Our work establishes a sound foundation
that will facilitate future research on this topic and empower
practitioners to apply these ideas to real world problems.

Our empirical results are modest; their primary virtue
is consistency with our theoretical analysis. Clearly further
experimentation and evaluation are warranted. In particular, it
sometimes appears as though transfer learning is doing most of
the work and that active learning plays little role other than to

3See “The End of the Beginning of Active Learning” by Daniel Hsu and
John Langford at http://hunch.net/?p=1800.
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Fig. 1. 20 Newsgroups results. The lefthand plots show test set error versus number of points seen by the active learner (the bottom is zoomed). The upper
right shows test set error versus number of queries. The bottom right plot shows the query rate (number of queries versus number of points seen).

manage the label query budget. This is due to the conservative
nature of IWAL CAL; the results in [2] are similarly modest.
The natural question is whether this framework can be used
with more aggressive approaches to active learning, such as
uncertainty region sampling, while avoiding the usual sampling
bias problems. We are pursuing this line of work.

One unsatisfying property of our framework is the per-
sistent nature of the transfer-based bias. This introduces a
constant source of error into our generalization bound and
may prevent us from learning an optimal classifier, even
with a large number of labeled target examples. Intuitively,
with enough target data, we should de-emphasize the source
data when training classifiers. One simple strategy that we
are investigating is to gradually increase α (the weight on
target risk) as we query more target labels. Another promising
approach would be to combine active learning with an adaptive
transfer learning framework that re-weights or transforms the
source data to reduce the difference between domains [16].
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Fig. 2. sentiment results. The lefthand plots show test set error versus number of points seen by the active learner (the bottom is zoomed). The upper right
shows test set error versus number of queries. The bottom right plot shows the query rate (number of queries versus number of points seen).

Source m Target d̂H∆H α
BvP2 360 BvP 0.0981 0.3
HvR 974 BvP 0.3072 0.6
AvC 1191 BvP 0.4368 0.9
kitchen2 1001 kitchen 0.1521 0.3
electronics 5760 kitchen 0.2573 0.3
dvd 4189 kitchen 0.6659 0.9

Fig. 3. Summary of experiments, including number of labeled source
examples and approximate dH∆H distances, and values of α.
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