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Abstract—Recent developments in industrial systems provide
us with a large amount of time series data from sensors,
logs, system settings and physical measurements, etc. These
data are extremely valuable for providing insights about the
complex systems and could be used to detect anomalies at
early stages. However, the special characteristics of these time
series data, such as high dimensions and complex dependencies
between variables, as well as its massive volume, pose great
challenges to existing anomaly detection algorithms. In this
paper, we propose Granger graphical models as an effective
and scalable approach for anomaly detection whose results can
be readily interpreted. Specifically, Granger graphical models
are a family of graphical models that exploit the temporal
dependencies between variables by applying L1-regularized
learning to Granger causality. Our goal is to efficiently compute
a robust “correlation anomaly” score for each variable via
Granger graphical models that can provide insights on the
possible reasons of anomalies. We evaluate the effectiveness
of our proposed algorithms on both synthetic and application
datasets. The results show the proposed algorithm achieves
significantly better performance than other baseline algorithms
and is scalable for large-scale applications.
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I. INTRODUCTION

Modern production systems in many industries are char-

acterized by a high degree of complexities and uncertainties

at multiple scales. As a result, it becomes challenging

to detect the onset and analyze the cause of anomalies

in these production processes, which, if undetected, could

lead to severe economic, environmental and safety risks.

Meanwhile, recent development in these industrial systems

have provided us with a large amount of data from sensors,

logs, system settings, physical measurements and so on.

These data are extremely valuable for providing insights

about the complex systems and could be useful to detect

production anomalies at early stages.

The common practice for anomaly detection is to build

a statistical model that captures the generation process of

the normal data, then estimate the likelihood of a new

observation based on this model and predict the data as an

“anomaly” if the likelihood is below some threshold [5]. In

addition, a number of models have also been developed to

specifically handle time-series data. For instance, [14] stud-

ies change detection from a sequence of graphs based on a

clustering technique for graph nodes, [15] addresses the task

by change point detection in multivariate time series, and

[11] utilizes discretization techniques to detect subsequences

in long time series. These algorithms have been applied

successfully in some applications of anomaly detection.

However, several issues have not been fully addressed: (1)

most models are very sensitive (to the observed data), which

results in a high false alarm rate; (2) detection metrics

such as a likelihood score is a single number that provides

limited insights about the anomaly, while identifying the

possible roots for anomalies is also important;(3) scalability

is an important aspect, especially given high-dimensional

data. Therefore, it is essential for us to pursue a robust,

interpretable, yet efficient approach for time-series anomaly

detection.

There usually exist two types of anomalies in multivari-

ate time-series data: one type is the anomaly that occurs

only within individual variables, referred to as “univariate

anomaly”; the other type is the anomaly that occurs due to

changes of temporal dependencies, referred to as “depen-

dency anomaly”. Univariate anomaly has been extensively

studied [11], [15], while dependency anomaly is much more

challenging to detect but common in the real applications.

In this paper, we propose to investigate Granger graphical

models, which uncover the temporal dependencies between

variables in multivariate time-series data, as a novel and

effective approach to detect dependency anomalies in time

series data. In addition, we investigate several parallel imple-

mentations of our algorithms so that they are applicable to

large scale applications. The experiments on one synthetic

dataset and two application datasets demonstrate that our

proposed model has the significant advantages on robustness,

interpretability and scalability over existing approaches in

time series anomaly detection.

II. GRANGER GRAPHICAL MODELS FOR ANOMALY

DETECTION

In this section, we first review Granger-lasso algorithm

for uncovering temporal dependencies between time series,

then describe in detail our proposed method via Granger

graphical models.



A. Granger-Lasso Algorithm

A number of approaches have been investigated to define

correlations or causalities for time series. Among them,

Granger causality has gained tremendous success across

many domains due to its simplicity, robustness, and ex-

tendibility [7], [4]. Most existing algorithms for detecting

Granger causality are based on statistical significance tests,

which is time-consuming and sensitive to the number of

observations in the autoregression.

In [1], the authors developed novel temporal dependency

learning algorithms based on penalized regression to achieve

neighborhood sparsity and demonstrated its effectiveness on

both simulation data and application data. Given multivariate

time series observations {Xt
i : t = 1, . . . , T ; i = 1, . . . , p},

where T is the length of time series and p is the dimension,

let XLagged
t,L represent the concatenated vector of all the

lagged variables (with a maximal lag of L) of up to time t,
i.e. {xt−l

j : j = 1, . . . , p, l = 1, . . . , L}. We can determine

the temporal dependence between time series i and others

by the following regularized regression:

β̂i(λ) = argmin
βi

(
T∑

t=1

‖xt
i −XLagged

t,L βi‖2 + λ‖βi‖1), (1)

where Xj Granger causes Xi if and only if at least one of

the corresponding coefficients of Xj is non-zero. The major

contribution of their work is to introduce L1 regularized re-

gression as an efficient method to recover the sparse Ganger

causality relations from high-dimensional time series.

B. Granger Graphical Models for Anomaly Detection

Before delving into the details of our proposed algorithm,

we first formally define the task of anomaly detection for

multivariate time-series data: given p number of time series,

X1,...,Xp, we aim to find data points (indexed by time

stamp) that significantly deviate from the normal pattern

of the data sequence. Without loss of generality, we can

transform the task into the following formulation: given two

data sequences

D(a) = {x(a),t
i |i = 1, . . . , p, t = 1, . . . , T (a)},

D(b) = {x(b),t
i |i = 1, . . . , p, t = 1, . . . , T (b)}, (2)

where D(a) is the reference set, and D(b) is the test set.

We are interested in computing the anomaly score for D(b)

with respect to D(a) for each variable, representing whether

and how much each variable contributes to the difference

between the two data sets. Notice that the length of the time-

series T (a) and T (b) could be different, but the number of

features in D(a) and D(b) must be the same. Theoretically,

the longer the training time-series the better we can detect

anomalies in the test data. However, as will be shown in our

experiments, as long as T (a) and T (b) are comparable, our

methods can yield reasonable results.

Univariate anomaly detection using Granger graphical

models is a simple step: For observation of Xi in the

test set D(b), we can evaluate its likelihood based on the

Granger graphical models built from the reference set D(a)

(since we have the assumption that the temporal depen-

dencies remain the same). However, detecting temporal

dependency anomaly is much more difficult. We propose an

anomaly detection algorithm based on regularization, namely

regularization-based Granger graphical models (GGM) algo-

rithm, to solve the problem. The GGM algorithm consists

of three steps: first, learning temporal causal graph of D(b)

by regularization; second, computing the anomaly scores of

D(b) using KL-divergence; third, determining anomaly by

threshold cutoff and identifying potential causes. Next, we

describe the algorithm in detail:

Step 1. Learning temporal causal graphs by regularization.

Notice that the null hypothesis of dependency anomaly is

that the temporal causal graphs of reference set D(a) and test

set D(b) are the same. When learning the temporal graphs

for D(b), we can use the null hypothesis as an additional

constraint in the optimization algorithm outlined in Granger-

lasso algorithm. There are several possibilities to achieve

this; we investigate two kinds of regularization terms and

examine their effectiveness:

Neighborhood similarity: Given the reference set D(a), we

first learn the temporal dependency graph using eq(1). For

test set D(b), we can add additional regularization terms to

impose the constraint that the values of β(b) should be zero

(or nonzero) when the corresponding values of β(a) is zero

(or nonzero). In other words, we can solve the following

optimization problem to get the temporal graphs for D(b):

β̂i
(b)

(λ) = argmin
β
(b)
i

(

T∑
t=1

‖x(b),t
i −X

(b),Lagged
t,L β

(b)
i ‖2), (3)

subject to
∑
j∈I0

|β(b)
i,j | ≤ ε0,

∑
j∈I1

|β(b)
i,j | ≤ ε1,

where I0 = {p : β
(a)
i,p = 0} is the index set of zero entries

in β
(a)
i and I1 = {p : β

(a)
i,p �= 0} is the index set of nonzero

entries in β
(a)
i , ε0 and ε1 are constants. Intuitively, ε0 should

be significantly smaller than ε1.

Coefficient similarity: Under the null hypothesis, another

type of constraint we can put in the optimization function is

that the values of the coefficients β(b) should be similar to

those of β(a). Therefore we have the following optimization

formulation to learn the temporal graphs for D(b):

β̂i
(b)

(λ) = argmin
β
(b)
i

(

T∑
t=1

‖x(b),t
i −X

(b),Lagged
t,L β

(b)
i ‖2), (4)

subject to
∑
j

|β(b)
i,j − β

(a)
i,j | ≤ ε,

where ε is a constant. We will discuss efficient solutions to

eq(3, 4) in the next section.

Step 2. Computing anomaly scores. From information

theoretic perspectives, the most natural difference measure

between two distributions is the Kullback-Leibler (KL)



divergence. For a particular time-series (or feature) Xi, we

can define its anomaly score as follows:

d ab
i ≡

∫
dxi p(a)(xi|xlagged

L ) ln
p(a)(xi|xlagged

L )

p(b)(xi|xlagged
L )

, (5)

where p(a) and p(b) are the underlying point process dis-

tributions with parameters estimated from D(a) and D(b)

respectively (by maximum likelihood given the learned tem-

poral graphs and underlying distribution over the graphs).

If the underlying distribution is linear Gaussian models,

i.e. xt
i|xLagged

t,L ∼ N(xLagged
t,L βi, σ

2), we can rewrite the

anomaly score as follows:

d ab
i = −(ln |σ(a)| − ln |σ(b)|)

− 1

2
(1− 1

(σ(b))2
((σ(a))2 + ((β

(a)
i − β

(b)
i )Δ)2)), (6)

where (β
(a)
i , (σ(a))2) and (β

(b)
i , (σ(b))2) are the coefficients

and variance for D(a) and D(b) respectively, and Δ is the

mean of the concatenate lagged variables.

We can further define dbai by reversing a and b in eq(5).

Notice that dabi and dbai are quantities that measure the

change in the neighborhood graph of the i-th node. The

greater these quantities are, the greater change we have

concerning Xi. Thus, given the assumption of neighborhood

preservation, it is reasonable to define the anomaly score of

the i-th variable as
ai ≡ max{d ab

i , dbai } (7)

This definition naturally extends the one proposed in [10].

One of the drawbacks of that approach is that it simply

uses the k-NN strategy for neighborhood selection. Also,

due to a heuristic definition of the dissimilarity, it cannot

detect anomalies caused by sign changes such as xi → −xi.

This information-theoretic definition of anomaly score can in

principle detect any type of anomaly affecting the probability

distribution.

In order to give insights to the time period during which

an anomaly occurs, we can slide a window with a fixed

length through the test series and compute anomaly scores

for observations within this window. In this way we can not

only determine if the whole test set is anomalous, but also

provide details about anomalies within each time period.

The length of the window depends on the balance between

detection delay and detection precision. A short window

length could lead to a shorter delay, while due to less

information provided in smaller window, it could make our

method less sensitive to anomalies.

Step 3. Determine anomaly by threshold cutoff and iden-

tifying potential causes. Once we have an anomaly score

for a variable in test data, we need a threshold to decide

whether the current observation should be considered as an

anomaly. To obtain a threshold, we resort to the reference

data and measure how much the normal time-series would

score under our definition of anomaly score. Specifically,

we slide the same window through the reference data and

calculate the anomaly scores for each window. We use these

scores to approximate the distribution of the anomaly scores

which a normal time-series should have. Given a significance

level α, we use the α-quantile of this distribution as the

threshold cutoff to determine anomalousness of the variable

in test data. If a time-series is found to be anomalous, we can

discover the dependency changes by comparing the temporal

dependency graphs of the reference data and test data or by

directly examining the changes in the learned coefficients to

identify potential causes for the anomaly.

Note that although our framework is introduced in a static

setting, it can also be adapted to a streaming fashion. We

can use two concatenated windows to slide through a stream

of time-series, with the leading window as the test data

and the tailing window as the reference data. When a new

observation arrives, the two windows move forward for one

time stamp. We use the previous coefficients to initialize

the iterative optimization algorithms to learn a new set of

coefficients. Based on the fact that anomalies are usually

rare, most of the time the coefficients at two consecutive

time stamps should’t vary too much, which ensures that the

optimization algorithms can usually converge very fast.

By now we have outlined the general framework of our

Granger graphical models for time-series anomaly detection.

Next we will investigate efficient solutions to the associated

optimization problems in our method.

III. STOCHASTIC & PARALLEL ANOMALY DETECTION

In this section, we investigate stochastic optimization

algorithms as accelerated solvers to penalized regression,

which is the most computationally expensive part of our

algorithm. We briefly introduce the candidate algorithms

here, and report their efficiency results in Section IV-D.

1. Stochastic Subgradient Descent (SGD) randomly

chooses a data point at each iteration and updates the

coefficient β using the subgradient on the current point

and a step size ηt satisfying the following constraint: ηt ≥
0,
∑∞

t=1 ηt = ∞,
∑∞

t=1 η
2
t = δ < ∞ . We keep track of the

lowest objective function in the updating process as well as

the corresponding coefficients. It has been shown that SGD

can almost surely converge to the optimal solution [2].

2. Stochastic Coordinate Descent (SCD) [13] is adapted

from the shooting method. Instead of updating all coordi-

nates, SCD uniformly picks only one coordinate in each

iteration. The expectation of the objective function converge

linearly to the optimal value in terms of iteration times.

3. Stochastic Subgradient Langevin Dynamics (SGLD)

[16] combines mini-batch stochastic subgradient descent

and Langevin Dynamics. At each iteration, besides the

standard stochastic subgradient descent, a Gaussian noise

εt = N(0, ηt) is added to the coefficients. The algorithm

first goes through a stochastic optimization stage, then enters

the Langevin Dynamics phase which generates samples

approximating the posterior distribution of the coefficients.



Table I
LIST OF ANOMALY DETECTION METHODS

Method Description
PCA-T2 PCA projection with T 2 statistic
PCA-Q PCA projection with Q statistic
DPCA-T2 Dynamic PCA projection with T 2 statistic
DPCA-Q Dynamic PCA projection with Q statistic
RVL Relevance vector learning method
DI Modified distance measure
GGM-N Our method using neighborhood similarity
GGM-C Our method using coefficient similarity

4. Parallel Stochastic Coordinate Descent (Shotgun) [3]

is a parallel implementation of SCD. Specifically, at each

update, a random subset of P coordinates is selected, then

P processors update each coordinate individually. Compared

to SCD, at each iteration P coordinates are updated instead

of one. Shotgun can also achieve linear convergence.

5. Parallel Stochastic Gradient Descent (PSGD) [12]

randomly partitions the data, giving one partition to each

processor, which sequentially uses each data point of its

own partition to update β using a constant step size η. The

coefficients from all processors are averaged as the final

result.

Results on the efficiency of these algorithms are reported

in Section IV-D.

IV. EXPERIMENTS

In this section, we examine the effectiveness and effi-

ciency of our proposed algorithms for time series anomaly

detection on both synthetic and application datasets. For

effectiveness, we compare our method with six state-of-art

baseline methods, including PCA projection with T 2 statistic

and Q statistic [8], dynamic PCA projection with T 2 statistic

and Q statistic [8], relevance vector learning method [9], and

modified distance measure [6]. For efficiency, we investigate

five different lasso-type solvers as introduced in Section III

for their suitability in our anomaly detection framework.

A. Dataset Description

The synthetic data is generated from vector auto-

regression models with two coefficients C1 and C2 over 10
features and a lag of 3. It consists of 300 observations, in

which the first 200 observations are generated from C1 and

the remaining 100 from C2 (i.e., an anomaly occurs at time

201). The temporal dependence graphs of C1 and C2 are

shown in Figure 1 (there are edges from node 1 to all other

nodes, which are omitted in Figure 1). Notice that only the

dependency structures for variables 1, 2 and 3 are changed.

All coefficient value remains the same for C1 and C2 except

those involved in the change of temporal dependence.
Figure 1. Temporal dependence graphs for synthetic data
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(a) Dependence Graph for C1
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(b) Dependence Graph for C2

We use the Tennessee Eastman process (TEP) data as our

application dataset, which contains 52 time series represent-

ing measurements of temperature, pressures, flow rates, etc

in a chemical process. The training data is free of anomalies

with 500 observations. There are 21 preprogrammed faults

in the TE process, giving us 21 test data sets. Each of them

has 960 observations measured at an interval of 3 minutes, of

which the first 160 are free of anomalies, and one of the 21
faults is introduced from time 161 to the end of observation.

More details about the data can be found in [8]. In our

experiment, we choose three most difficult data sets (as noted

in [8]), with fault 4, fault 5 and fault 11 respectively, to

demonstrate the effectiveness of our methods.

B. Results on Synthetic Data Set

In this experiment, the first 100 observations of the syn-

thetic data set are used as reference data, and the remaining

200 as test data. The first half of the test data is normal while

the remaining is anomalous. Table I lists all the anomaly

detection methods used in the experiments. For our methods

and DI, we use a window of size 10 to slide through the test

data. For the PCA based methods, the number of principal

components is determined using the smallest number needed

to explain 95% of the total variance. A significance level of

95% is used for all significance test based methods.

Table II reports the recall (proportion of correctly detected

alarms out of all true alarms), precision (proportion of

correctly detected alarms out of all detected alarms) and

F1 value (defined as F1 = 2 · Recall · Precision/(Recall +
Precision)) of all eight methods. Note that for RVL, DI,
GGM-N and GGM-C, each variable has its own recall and

precision rate, and we report their averaged rates. From the

table we can see the significant advantages of our methods.

Regarding recall rate, both GGM-N and GGM-C score very

close to the highest one achieved by DI. Though having

the highest recall rate, DI has a much lower precision than

our methods. In terms of precision, PCA-Q and DPCA-
Q achieve 100% while our performance of 99% is also

competent, while the low recall rate of PCA-Q and DPCA-Q
make them much less reliable. The low recall rates of PCA-

based methods also indicate that anomalies cannot always be

captured in the subspace where variance is maximized. The

F1 value indicates that our methods have the highest overall

quality. Note that, with finely tuned parameters, GGM-N
Table II

COMPARISON OF OVERALL ANOMALY DETECTION PERFORMANCE ON

SYNTHETIC DATASET

Method Recall Precision F -value
PCA-T2 0% 100% 0.00
PCA-Q 31% 100% 0.47

DPCA-T2 0% 100% 0.00
DPCA-Q 32% 100% 0.48

RVL 46% 65% 0.54
DI 92% 73% 0.81

GGM-N 89% 99% 0.94
GGM-C 89% 99% 0.94



and GGM-C perform almost the same, with only slightly

different values in some anomaly scores.

Figure 3(a) through 3(c) give details of recall, precision

and F1 scores for each of the 10 features by RVL, DI, GGM-
N and GGM-C. As we can see, RVL achieves very high

recall and precision rates for features 1−3, whose temporal

dependencies are changed after the anomaly occurs. But for

the remaining variables, since their coefficients and noise

scale remain the same, simply using a regression model

is not powerful enough to detect anomalies. DI generally

performs best in terms of recall rates followed by our

methods, while our methods demonstrates great advantage

on precision. For DI method, changes in the mean, deviation

and distribution all contribute similar amounts to the total

score, while changes in the mean and deviation are also

reflected in the distribution change, which makes DI very

sensitive to fluctuation.

C. Results on TEP Simulation Data

In this experiment, we test all eight methods on the three

TEP data sets with fault 4, fault 5 and fault 11 respectively.

Note that when we calculate the recall and precision scores

for RVL, DI, GGM-N and GGM-C we only look at those

most affected variables in each fault, which are variable 51
for fault 4 and fault 11, and variable 22 for fault 5. A window

size of 10 is used for the window-based methods.

Table III reports the recall, precision and F1 value. Similar

to the previous experiment, the four PCA-based methods per-

forms reasonably well in terms of precision, while quite poor

on recall. These methods usually detect anomaly shortly

after it occurs, but after some time the anomaly scores would

drop below their thresholds, yielding low recall rates.

Fault 5 only causes a slight disturbance to variable 22,

which goes back to almost the same behavior as before,

making it difficult to persistently detecting fault after it takes

place. Consequently, the recall rates for RVL, DI, GGM-N
and GGM-C are lower than in the other two faults. The

advantage of our methods lies in the fact that they can

capture changes in dependencies between variables. Even

though variable 22 appears to return to its normal behavior

some time after the fault occurs, the dependence between

this variable and the others are different from before, which

enables our methods to significantly outperform the others

Table IV
PREDICTED RANK OF THE TRUE FEATURES RESPONSIBLE FOR FAULT 4,

5 AND 11 ON TEP DATASET

Fault 4 Fault 5 Fault 11
Method 0-15h15-40h0-15h15-40h0-15h15-40h

PCA-CONT 11 9 26 33 9 9
PCA-RES 1 1 6 18 1 1

DPCA-CONT 10 9 32 34 12 13
DPCA-RES 1 1 6 17 1 1

RVL 1 1 12 37 1 1
DI 1 1 11 5 1 1

GGM-N 2 1 2 4 2 2
GGM-C 2 1 2 4 2 2

Figure 2. Detailed comparison of anomaly detection performance on
synthetic dataset: recall, precision and F1 scores on individual features
by different methods
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(c) F-1

in this case. Overall, our proposed methods achieve the best

performance in detecting all three faults.

We also examine the performance of of our method in

identifying the causes of anomalies. In the TEP dataset, we

have the ground truth on which features are most closely

related to each fault, i.e., feature 51 for fault 4 and 11,

and feature 22 for fault 5. Table IV lists the rank of these

features by different methods based on their predicted rank

list for features responsible for the anomaly. For the PCA-

based methods, variables are ranked-based on the CONT or

RES measures [8]. For RVL, DI, GGM-N and GGM-C the

ranking is based on how much by percentage the anomaly

scores exceed their thresholds. We divide the time after the

anomaly to two parts, 0 to 15 hours and 15 to 40 hours

after the fault, which correspond to the time period shortly

after the fault occurs and the period when some time has

passed since the fault. It is obvious from Table IV that all

the methods perform comparatively better for fault 4 and 11
than for fault 5. For fault 5, despite the variable’s tendency

of returning to normal after the introduction of the fault, the

rankings based on our methods are persistently higher than

the other methods in both time periods, which further proves

the persistence of our fault detection performance.

D. Results on Scalability Analysis

In this experiment, we examine how our methods can

be accelerated for large-scale applications. As discussed in

Section III, we examine six algorithms to efficiently solve

the associated optimization problems, including SGD, SCD,

SGLD, Shotgun and PSGD. We test these algorithms on the

TEP dataset and evaluate their performance on the anomaly

detection accuracy given the same response time. Figure 3

plots the objective function of eq(3) in terms of the number

of iterations and the runtime on the reference set of the

TEP data. For PSGD, the number of data points distributed

to each processor is counted as the number of iterations. All

methods converge pretty fast to the minimum value. Shotgun
shows some improvements over SCD by parallelization, and

SGLD has almost the same performance as the basic SGD.

Overall PSGD converges fastest both in terms of iteration

and time. However, despite the fast convergence speed, we

observe that its objective function value fluctuates a lot more

than the other methods. Generally speaking, PSGD achieves

faster convergence at the cost of incurring more noise.

Figure 4 reports the accuracy of anomaly detection using

the five stochastic lasso solvers on TEP data with Fault



Table III
COMPARISON OF ANOMALY DETECTION PERFORMANCE ON TEP DATASET: RECALL, PRECISION AND F1 SCORE FOR FAULT 4, 5 AND 11.

Fault 4 Fault 5 Fault 11
Method Recall Precision F -1 Recall Precision F -1 Recall Precision F -1
PCA-T2 12.1% 88.2% 0.21 32.9% 95.3% 0.49 23.5% 91.7% 0.37
PCA-Q 8.9% 87.7% 0.16 29.1% 95.9% 0.45 8.6% 85.2% 0.16

DPCA-T2 14.0% 86.2% 0.24 34.5% 93.9% 0.5 22.9% 85.9% 0.36
DPCA-Q 8.6% 86.3% 0.16 28.4% 95.4% 0.44 8.1% 87.8% 0.15

RVL 100% 97% 0.98 22.6% 89.6% 0.36 83.9% 96.4% 0.90
DI 100% 95% 0.97 59.4% 89.8% 0.71 98.3% 95.4% 0.97

GGM-N 100% 98.8% 0.99 69.3% 90.1% 0.78 99.1% 97.3% 0.98
GGM-C 100% 98.9% 0.99 70.5% 89.5% 0.79 99.3% 97.3% 0.98

Figure 3. Scalability analysis on TEP dataset: the value of objective
function over iterations (left) and over runtime (right).
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Figure 4. Scalability Analysis: anomaly detection performance of each
lasso solvers over the number of search iterations.
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(a) Recall
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(b) Precision
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(c) F-value

4. When the number of iterations is small, SGD, SGLD
and SCD are still a long way from convergence. Their

anomaly thresholds stay above their anomaly scores at most

points, allowing only a few anomalous points to exceed their

thresholds, which results in very low recall rates and high

precision. Shotgun and PSGD are much more tolerant for

low iterations, with PSGD slightly better. In general, the F1

score in Figure 5(c) is dominated by the recall rate, and

PSGD achieves the best overall performance. Considering

the fact that PSGD enjoys fast convergence while suffers

more from fluctuation, we can see our anomaly detection

framework does not require very high accuracy in the

optimization. As long as a lasso solver can quickly capture

the general dependence between variables, it would be a

good fit for our framework.

V. CONCLUSIONS

In this paper, we proposed a novel method based on

Granger causality to detect anomalies regarding dependency

changes in multi-variate time series. The key idea is to build

a Granger graphical model on a reference data set, pose a

constraint on the model of the test data set assuming it has

the same temporal dependence as the reference data, and

measure the difference between the two distributions inferred

from reference and test model using KL-divergence. We

also investigated several stochastic and parallel optimization

algorithms to speed up our method. The empirical results

verified the effectiveness of our method in accuracy and

persistence. For future work, we are interested in relax-

ing the linear assumption in Granger causality, as well as

anomaly detection with missing observations or even hidden

variables.
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